Hands-on Zeek (Bro) Labs

UTSA
The University of Texas at San Antonio™
The Cyber Center For Security and Analytics

Elias Bou-Harb, Ph.D., CISSP

Intro to Zeek (Bro)
Network Intrusion Detection Systems

• Software/hardware systems that actively monitor live networks for malicious traffic, policy violations and unidentified anomalies

• Deployed to protect operational networks without disturbing normal/benign packet traffic flows

• In contrast to firewalls, NIDS are most often passive, looking for signatures or anomalies, although they can operate as NIPS as well
Zeek’s Development began in 1995 by Vern Paxon (as Bro)

Zeek’s scripting language creates a versatile environment for fine-grained anomaly-related detection and processing

Versatile formatting of output data for preprocessing and advanced analytics

Zeek’s Core

- **Packet Stream**
 - Live network capture/offline packet parsing

- **Event Engine**
 - Breaks down a packet stream based on packet features or related connection information

- **Policy Interpreter**
 - Comprised of event handlers; determines what Zeek will do when an event has been recorded

- **Output**
 - Generates output log files, alerts and notices declared within policy scripts
Network Traffic Signatures: A *Snort* Signature

Follows a rule-based format

```
(alert tcp any 80 -> 192.168.x.x any (msg: "TCP Packet"; sid:100)
  Rule Header
  Rule Option

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80 (msg: "WEB-ATTACKS
  conf/httpd.conf attempt"; nocase; sid:1373; flow:to_server, established;
  content:"conf/httpd.conf"; [...] )
```
Network Traffic Signatures: A Zeek Signature

Follows a variable/data object-based format
Variables support strings, integers and floats

```
signature sid-1371 {
    ip,proto == tcp
    dst-ip == a.b.0.0/16,c.d.e.0/24
    dst-port == 80
    payload /.*conf/httpd.conf/
    tcp-state established, originator
    event “WEB-ATTACKS conf/http.conf attempt”
}
```
Zeek Log Files

- After processing network traffic, Zeek will output statistical log files.
- By default, log files will be separated by the transport protocol and related characteristics.
- At a basic level, these log files can be used to determine the presence of an anomaly.
- Zeek log files can be formatted and exported to external processing software.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Protocol-Specific</th>
<th>Detection</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>conn.log</td>
<td>http.log</td>
<td>notice.log</td>
<td>known_certs.log</td>
</tr>
<tr>
<td>files.log</td>
<td>ftp.log</td>
<td>signatures.log</td>
<td>known_services.log</td>
</tr>
<tr>
<td>x509.log</td>
<td>dns.log</td>
<td>traceroute.log</td>
<td>weird.log</td>
</tr>
</tbody>
</table>
Zeek Policy Scripts and Filters

- The Zeek scripting language is used to develop and implement filters and policies for the event-based engine.

- Scripts can be implemented to permanently update Zeek’s event handling or used as a non-permanent filter.

- Script events include (but are not limited to):
 - Protocol-specific events
 - Application-level headers
 - Unknown/broken connection handling

- Packet data is accessible within the filters to be used for calculations or to be exported into separate log files.
Zeek Policy Scripts and Filters

```zeek
event udp_request(u:connection){
    print fmt("A UDP Request was found!");
    print fmt("Source Address: %s Destination Port: %s",
             u$id$orig_h, u$id$resp_p);
}

event udp_reply(u: connection){
    print fmt("A UDP Reply was found!");
    print fmt("Source Address: %s Destination Address: %s",
             u$id$orig_h, u$id$resp_h);
}

export {
    const addr_scan_interval = 5min &redef;
    const addr_scan_threshold = 20 &redef;
}

function horizontal_scanning(c: connection): bool {
    if (num_requests(c$id$orig_h) > addr_scan_threshold &&
    time_alive(c$connection) < addr_scan_interval) {
        print fmt("Horizontal Scanner Detected!");
        return c$id$orig_h;
    }
}
```

Protocol-oriented Zeek Filter

Custom-based detectors
Zeek Inferring IoT-generating Scanning

The Insecurity of the IoT Paradigm
Zeek Inferring IoT-generating Scanning

Malicious scans from compromised IoT devices
- 2 TB of Darknet Data (Daily)
- 840K global IoT exploitations (25K in the US)
- Exploitations in health services, manufacturing plants, gov. entities
Zeek Inferring IoT-generating Scanning

Malicious scans from compromised IoT devices

- 2 TB of Darknet Data (Daily)
- 840K global IoT exploitations (25K in the US)
- Exploitations in health services, manufacturing plants, gov. entities

<table>
<thead>
<tr>
<th>Date</th>
<th>2019-10-08</th>
<th>2019-11-25</th>
<th>2020-03-11</th>
<th>2020-04-26</th>
</tr>
</thead>
<tbody>
<tr>
<td># all infected hosts</td>
<td>754,169</td>
<td>836,255</td>
<td>806,326</td>
<td>839,082 (752,348)</td>
</tr>
<tr>
<td># Compromised IoT</td>
<td>274,699</td>
<td>229,488</td>
<td>224,964</td>
<td>480,049 (405,184)</td>
</tr>
<tr>
<td># all infected hosts (in USA)</td>
<td>16,614</td>
<td>15,957</td>
<td>23,779</td>
<td>25,468 (16,981)</td>
</tr>
<tr>
<td># Compromised IoT (in USA)</td>
<td>6,569</td>
<td>5,489</td>
<td>8,541</td>
<td>12,909 (4,920)</td>
</tr>
<tr>
<td># infected hosts in Medical</td>
<td>131</td>
<td>6</td>
<td>160</td>
<td>323 (311)</td>
</tr>
<tr>
<td># Compromised IoT in Medical</td>
<td>17</td>
<td>0</td>
<td>10</td>
<td>76 (58)</td>
</tr>
<tr>
<td># infected hosts in Medical (US)</td>
<td>26</td>
<td>2</td>
<td>22</td>
<td>58 (54)</td>
</tr>
<tr>
<td># Compromised IoT in Medical (US)</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>11 (10)</td>
</tr>
</tbody>
</table>
Hands-on Zeek (Bro) Labs
Zeek Hands-on Labs

• Lab 1 - Introduction to the Capabilities of Zeek
• Lab 2 - An Overview of Zeek Logs
• Lab 3 - Parsing, Reading and Organizing Zeek Files
• Lab 4 - Generating, Capturing and Analyzing Network Scanner Traffic
• Lab 5 - Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic
• Lab 6 - Introduction to Zeek Scripting
• Lab 7 - Introduction to Zeek Signatures
• Lab 8 - Advanced Zeek Scripting for Anomaly and Malicious Event Detection
• Lab 9 - Profiling and Performance Metrics of Zeek
• Lab 10 - Application of the Zeek IDS for Real-Time Network Protection
• Lab 11 - Preprocessing of Zeek Output Logs for Machine Learning
• Lab 12 - Developing Machine Learning Classifiers for Anomaly Inference and Classification
Lab 4 - Generating, Capturing and Analyzing Network Scanner Traffic

<table>
<thead>
<tr>
<th>Device</th>
<th>Account</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>admin</td>
<td>password</td>
</tr>
</tbody>
</table>
Lab 4 - Generating, Capturing and Analyzing Network Scanner Traffic

```bash
admin@bro1:~$ sudo nmap -sS 192.168.2.2
[sudo] password for admin:
Starting Nmap 7.60 (https://nmap.org) at 2019-06-26 18:27 EDT
Nmap scan report for 192.168.2.2
Host is up (0.001s latency).
All 1000 scanned ports on 192.168.2.2 are closed
```

```bash
admin@bro2:~/Zeek-Labs-Workspace/TCP-Traffic$ sudo tcpdump -i ens33 -s 0 -w scan traffic.pcap
[sudo] password for admin:
tcpdump: listening on ens33, link-type EN10MB (Ethernet), capture size 262144 bytes
^CB045 packets captured
8045 packets received by filter
0 packets dropped by kernel
```

```bash
admin@bro2:~/Zeek-Labs-Workspace/TCP-Traffic$ zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10
```

```bash
62 53
8 80
8 443
5 995
5 6667
5 3
5 25
4 9999
4 9998
4 999
```
Lab 9 - Developing Machine Learning Classifiers for Anomaly Inference and Classification

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th></th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>MCC</th>
<th>ROC Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Weighted Avg.</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

```
 a  b       <- classified as
831 0 | a = 1
0  570 | b = 0
```
Hands-on Zeek (Bro) Labs

Enjoy the Labs 😊
Thanks for the support!

Elias Bou-Harb, Ph.D., CISSP
elias.bouharb@utsa.edu