NETWORK TOOLS AND PROTOCOLS

Lab 13: Impact of MSS on Throughput

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers”
Contents

- Overview ... 3
- Objectives ... 3
- Lab settings .. 3
- Lab roadmap ... 3
- **1** Introduction to MSS .. 3
 - 1.1 Maximum transmission unit (MTU) .. 3
 - 1.2 Maximum segment size (MSS) ... 4
- **2** Lab topology .. 5
 - 2.1 Starting hosts h1 and h2 ... 6
 - 2.2 Emulating 10 Gbps WAN with packet loss ... 7
- **3** Modifying maximum transmission unit (MTU) .. 10
 - 3.1 Identifying interface’s current MTU ... 10
 - 3.2 Modifying MTU values on all interfaces ... 11
- References ... 14
Overview

This lab introduces Maximum Transmission Unit (MTU), Maximum Segment Size (MSS), and their effect on network throughput in a high-bandwidth Wide Area Networks (WAN) with packet losses. Throughput measurements are conducted in this lab to compare the observed throughput while using a higher MSS against a normal MSS value.

Objectives

By the end of this lab, students should be able to:

1. Understand Maximum Transmission Unit (MTU).
2. Define Maximum Segment Size (MSS).
3. Identify interfaces’ default MTU value.
4. Modify the MTU of an interface.
5. Understand the benefit of using a high MSS value in a WAN that incurs packet losses.
6. Emulate WAN properties in Mininet and achieve full throughput with high MSS.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

<table>
<thead>
<tr>
<th>Device</th>
<th>Account</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client1</td>
<td>admin</td>
<td>password</td>
</tr>
</tbody>
</table>

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to MSS.
2. Section 2: Lab topology.
3. Section 3: Modifying maximum transmission Unit (MTU) and analyzing results.

1 Introduction to MSS

1.1 Maximum transmission unit (MTU)
The *Maximum Transmission Unit (MTU)* specifies the largest packet size (in bytes), including headers and data payload, that can be transmitted by the link-layer technology\(^1\). Even though data rates have dramatically increased since Ethernet standardization, the MTU remains at 1500 bytes. A frame carrying more than 1500 bytes is referred to as a jumbo frame and can allow up to 9000 bytes.

![Standard Ethernet Frame's MTU](image1)

Figure 1. Standard Ethernet Frame’s MTU

Figure 1 illustrates the standard Ethernet frame which has 1500 bytes MTU. Although most gigabit networks run with no impact while using the standard MTU, large numbers of frames increase CPU loads and overheads. In such cases jumbo frames can be used to mitigate excess overhead, as demonstrated in figure 2.

![Jumbo Ethernet Frame's MTU](image2)

Figure 2. Jumbo Ethernet Frame’s MTU

As shown in figure 2, jumbo frames impose lower overheads than normal frames (1500 MTU) by reducing the overall number of individual frames sent from source to destination. Not only does this reduce the number of headers needed to move the data, CPU load is also lessened due to a decrease in packet processing by routers and end devices.

1.2 Maximum segment size (MSS)

The Maximum Segment Size (MSS) is a parameter of the options field of the TCP header that specifies the largest amount of data, specified in bytes, that a computer or communications device can receive in a single TCP segment\(^3\). This value is specified in the TCP SYN packet during TCP’s three-way handshake and is set permanently for the current session.

The MSS must be set to a value equal to the largest IP datagram (minus IP and TCP headers) that the host can handle in order to avoid fragmentation. Note that lowering the MSS will remove fragmentation, however it will impose larger overhead.
With highspeed networks, using half a dozen or so small probes to see how the network responds wastes a huge amount of bandwidth. Similarly, when packet loss is detected, the rate is decreased by a factor of two. TCP can only recover slowly from this rate reduction. The speed at which the recovery occurs is proportional to the MTU. Thus, it is recommended to use large frames.

In this lab, we show and compare the effect of jumbo frames versus standard frames in a WAN that incurs packet losses.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

![Lab topology diagram]

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by clicking on Miniedit’s shortcut. When prompted for a password, type **password**.

![Miniedit shortcut]

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate the *Lab 13.mn* topology file and click on Open.
Step 3. Before starting the measurements between host h1 and host h2, the network must be started. Click on the Run button located at the bottom left of Miniedit’s window to start the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting hosts h1 and h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host h1 and allows the execution of commands on that host.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the `ping` command. On host h1, type the command `ping 10.0.0.2`. This command tests the connectivity between host h1 and host h2. To stop the test, press `Ctrl+c`. The figure below shows a successful connectivity test.

![figure of ping output]

Figure 8. Connectivity test using `ping` command.

2.2 Emulating 10 Gbps WAN with packet loss

This section emulates a WAN with packet loss. We will first set the bandwidth between host 1 and host h2 to 10 Gbps. Then, we will emulate a 1% packet loss and measure the throughput.

Step 1. Launch a Linux terminal by holding the `Ctrl+Alt+T` keys or by clicking on the Linux terminal icon.
Lab 13: Impact of MSS on Throughput

The Linux terminal is a program that opens a window and permits you to interact with a command-line interface (CLI). A CLI is a program that takes commands from the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type `password` and hit `Enter`. This command introduces 1% packet loss on switch S1’s `s1-eth2` interface.

```
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1%
```

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the same terminal, type the command below. This command sets the bandwidth to 10 Gbps on switch S1’s `s1-eth2` interface. The `tbf` parameters are the following:

- **rate**: 10gbit
- **burst**: 5,000,000
- **limit**: 15,000,000

```
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 limit 15000000
```

Figure 9. Shortcut to open a Linux terminal.

Figure 10. Adding 1% packet loss to switch S1’s `s1-eth2` interface.

Figure 11. Limiting the bandwidth to 10 Gbps on switch S1’s `s1-eth2` interface.
Lab 13: Impact of MSS on Throughput

Step 4. The user can now verify the rate limit configuration by using the `iperf3` tool to measure throughput. To launch iPerf3 in server mode, run the command `iperf3 -s` in host h2’s terminal:

```
iperf3 -s
```

![Figure 12. Host h2 running iPerf3 as server.](image)

Step 5. Now to launch iPerf3 in client mode again by running the command `iperf3 -c 10.0.0.2` in host h1’s terminal:

```
iperf3 -c 10.0.0.2
```

![Figure 13. iPerf3 throughput test.](image)

Note the measured throughput now is approximately 7.99 Gbps, which is different than the value assigned in the `tbf` rule (10 Gbps). In the next section, the test is repeated but using a higher MSS.

Step 6. In order to stop the server, press `Ctrl+c` in host h2’s terminal. The user can see the throughput results in the server side too. The summarized data on the server is similar to that of the client side’s and must be interpreted in the same way.
3 Modifying maximum transmission unit (MTU)

As explained previously, jumbo frames offer throughput improvements in networks incurring packet losses. In this section, the user will change the MTU of a network interface in Linux.

3.1 Identifying interface’s current MTU

Step 1. To identify the MTU of a network interface of a device, the `ifconfig` is used. On host h1’s terminal, type in the following command:

```
ifconfig
```

![Figure 14. Identifying interface’s MTU.](image)

As shown in Figure 14, the interface h1-eth0 has an MTU of 1500 bytes. The same steps can be performed on host h2’s interface.

Step 2. In order to identify the MTU on the switches’ interfaces, launch the Client’s terminal located on the Desktop, and type in the following command:

```
ifconfig
```
Figure 15. Identifying switches’ interfaces’ MTU.

Each switch in the topology has two interfaces: switch S1 has s1-eth1 and s1-eth2, switch S2 interfaces are s2-eth1 and s2-eth2. The MTU value on all interfaces are 1500 bytes.

3.2 Modifying MTU values on all interfaces

To modify the MTU of a network interface use the following command:
ifconfig <iface> mtu <bytes>

Step 1. To change the MTU to 9000 bytes, on host h1’s terminal, type in the following command:

```
ifconfig h1-eth0 mtu 9000
```

![Figure 17. Changing host h1’s interface MTU.](image)

Step 2. To change the MTU to 9000 bytes, on host h2’s terminal, type in the following command:

```
ifconfig h2-eth0 mtu 9000
```

![Figure 18. Changing host h2’s interface MTU.](image)

Step 3. Similarly, the MTU values of switch S1 and switch S2’s interfaces must be changed to 9000 bytes. In order to modify the MTU values, type the following command on the Client’s terminal. When prompted for a password, type `password` and hit Enter.

```
sudo ifconfig s1-eth1 mtu 9000
```

```
sudo ifconfig s1-eth2 mtu 9000
```

```
sudo ifconfig s2-eth1 mtu 9000
```

```
sudo ifconfig s2-eth2 mtu 9000
```

![Figure 19. Changing MTU values on the switches.](image)
Step 4. The user can now verify the effect of modifying the MTU values on the switches and the effect of MSS by using the `iperf3` tool to measure throughput. To launch iPerf3 in server mode, run the command `iperf3 -s` in host h2’s terminal:

```
iperf3 -s
```

![Figure 20. Host h2 running iPerf3 as server.](image)

Step 5. To launch iPerf3 in client mode type the command below. The `-M` option is used to specify the MSS to be sent in the TCP handshake.

```
iperf3 -c 10.0.0.2 -M 9000
```

![Figure 21. iPerf3 throughput test with a 9000 MSS value.](image)

Notice the measured throughput now is approximately 10 Gbps, which is similar to the value assigned in the `tbf` rule (10 Gbps).

Step 6. In order to stop the server, press `Ctrl+c` in host h2’s terminal. The user can see the throughput results in the server side too. The summarized data on the server is similar to that of the client side’s and must be interpreted in the same way.

This concludes Lab 13. Stop the emulation and then exit out of MiniEdit.
References