BORDER GATEWAY PROTOCOL

Lab 1: Introduction to Mininet

Document Version: 02-17-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers”
Contents

Overview ... 3
Objectives ... 3
Lab settings ... 3
Lab roadmap .. 3
1 Introduction to Mininet .. 3
2 Invoke Mininet using the CLI .. 5
 2.1 Invoke Mininet using the default topology .. 5
 2.2 Test connectivity ... 9
3 Build and emulate a network in Mininet using the GUI .. 10
 3.1 Build the network topology .. 10
 3.2 Test connectivity ... 12
 3.3 Automatic assignment of IP addresses .. 15
 3.4 Save and load a Mininet topology ... 17
4 Configure router r1 .. 18
 4.1 Verify end-hosts configuration ... 19
 4.2 Configure router’s interface .. 21
 4.3 Verify router r1 configuration ... 25
 4.4 Test connectivity between end-hosts .. 26
References .. 26
Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network tools and protocols. It demonstrates how to invoke Mininet from the command-line interface (CLI) utility and how to build and emulate topologies using a graphical user interface (GUI) application.

Objectives

By the end of this lab, students should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.
5. Configure the interfaces of a router using the CLI.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

<table>
<thead>
<tr>
<th>Device</th>
<th>Account</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client1</td>
<td>admin</td>
<td>password</td>
</tr>
</tbody>
</table>

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.
4. Section 4: Configure router r1.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and protocols. With a single command, Mininet can create a realistic virtual network on any type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides an inexpensive solution and streamlined development running in line with production networks. Mininet offers the following features:
- Fast prototyping for new networking protocols.
- Simplified testing for complex topologies without the need of buying expensive hardware.
- Realistic execution as it runs real code on the Unix and Linux kernels.
- Open source environment backed by a large community contributing extensive documentation.

Mininet is useful for development, teaching, and research as it is easy to customize and interact with it through the CLI or the GUI. Mininet was originally designed to experiment with OpenFlow and Software-Defined Networking (SDN). This lab, however, only focuses on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes called containers, or more accurately, network namespaces. Containers consume sufficiently fewer resources that networks of over a thousand nodes have created, running on a single laptop. A Mininet container is a process (or group of processes) that no longer has access to all the host system’s native network interfaces. Containers are then assigned virtual Ethernet interfaces, which are connected to other containers through a virtual switch. Mininet connects a host and a switch using a virtual Ethernet (veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as illustrated below.
Each container is an independent network namespace, a lightweight virtualization feature that provides individual processes with separate network interfaces, routing tables, and Address Resolution Protocol (ARP) tables. Mininet provides network emulation opposed to simulation, allowing all network software at any layer to be simply run as is; i.e. nodes run the native network software of the physical machine. On the other hand, in a simulated environment applications and protocol implementations need to be ported to run within the simulator before they can be used.

2 Invoke Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the Linux terminal icon.

![Figure 3. Shortcut to open a Linux terminal.](image)

The Linux terminal is a program that opens a window and permits you to interact with a command-line interface (CLI). A CLI is a program that takes commands from the keyboard and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted for a password, type `password` and hit enter. Note that the password will not be visible as you type it.

```
sudo mn
```
The above command starts Mininet with a minimal topology, which consists of a switch connected to two hosts as shown below.

When issuing the `sudo mn` command, Mininet initializes the topology and launches its command line interface which looks like this:

```
mininet>
```

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the following command:

```
help
```
Step 4. To display the available nodes, type the following command:

```
nodes
```

The output of this command shows that there are two hosts (host h1 and host h2) and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to understand the topology. Issue the command shown below to see the available links.

```
net
```
Lab 1: Introduction to Mininet

Figure 8. Mininet’s `net` command.

The output of this command shows that:

1. Host h1 is connected using its network interface `h1-eth0` to the switch on interface `s1-eth1`.
2. Host h2 is connected using its network interface `h2-eth0` to the switch on interface `s1-eth2`.
3. Switch s1:
 a. has a loopback interface `lo`.
 b. connects to `h1-eth0` through interface `s1-eth1`.
 c. connects to `h2-eth0` through interface `s1-eth2`.

Mininet allows you to execute commands on a specific device. To issue a command for a specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

```
h1 ifconfig
```

Figure 9. Output of `h1 ifconfig` command.

This command executes the `ifconfig` Linux command on host h1. The command shows host h1’s interfaces. The display indicates that host h1 has an interface `h1-eth0` configured with IP address 10.0.0.1, and another interface `lo` configured with IP address 127.0.0.1 (loopback interface).
2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1 and host h2 respectively. To test connectivity between them, you can use the command `ping`. The `ping` command operates by sending Internet Control Message Protocol (ICMP) Echo Request messages to the remote computer and waiting for a response. Information available includes how many responses are returned and how long it takes for them to return.

Step 1. On the CLI, type the command shown below. This command tests the connectivity between host h1 and host h2. To stop the test, press `Ctrl+c`. The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and successfully received the expected responses.

```
h1 ping 10.0.0.2
```

![Figure 10. Connectivity test between host h1 and host h2.](image)

Step 2. Stop the emulation by typing the following command:

```
exit
```

![Figure 11. Stopping the emulation using `exit`.](image)

The command `sudo mn -c` is often used on the Linux terminal (not on the Mininet CLI) to clean a previous instance of Mininet (e.g., after a crash).
3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit\(^5\) to deploy the topology illustrated below. MiniEdit is a simple GUI network editor for Mininet.

![Lab topology](image)

Figure 12. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by clicking on MiniEdit’s shortcut. When prompted for a password, type `password`.

![MiniEdit Desktop shortcut](image)

Figure 13. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

![MiniEdit Graphical User Interface (GUI)](image)

Figure 14. MiniEdit Graphical User Interface (GUI).
The main buttons are:

1. **Select**: allows selection/movement of the devices. Pressing *Del* on the keyboard after selecting the device removes it from the topology.
2. **Host**: allows addition of a new host to the topology. After clicking this button, click anywhere in the blank canvas to insert a new host.
3. **Switch**: allows addition of a new switch to the topology. After clicking this button, click anywhere in the blank canvas to insert the switch.
4. **Link**: connects devices in the topology (mainly switches and hosts). After clicking this button, click on a device and drag to the second device to which the link is to be established.
5. **Run**: starts the emulation. After designing and configuring the topology, click the run button.
6. **Stop**: stops the emulation.

Step 2. To build the topology illustrated in Figure 12, two hosts and one switch must be deployed. Deploy these devices in MiniEdit, as shown below.

![MiniEdit's topology](image)

Use the buttons described in the previous step to add and connect devices. The configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is 10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the right click and selecting properties on the device. For example, host h2 is assigned the IP address 10.0.0.2/8 in the figure below.
Figure 16. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be started.

Step 1. Click on the *Run* button to start the emulation. The emulation will start and the buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

![Figure 17. Starting the emulation.]

Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting *Terminal*. This opens a terminal on host h1 and allows the execution of commands on the host h1. Repeat the procedure on host h2.
The network and terminals at host h1 and host h2 will be available for testing.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP addresses. The interface h1-eth0 at host h1 should be configured with the IP address 10.0.0.1 and subnet mask 255.0.0.0.

```
ifconfig
```
Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address 10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the connectivity between host h1 and host h2. To stop the test, press `Ctrl+c`. The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2 (10.0.0.2) and successfully received the expected responses.

```
ping 10.0.0.2
```

Step 5. Stop the emulation by clicking on the *Stop* button.
3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An alternative is to rely on Mininet for an automatic assignment of IP addresses (by default, Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right-click on host h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as shown below. Repeat the procedure on host h2.

![Host h1 properties](image)

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.
Step 3. Run the emulation again by clicking on the Run button. The emulation will start and the buttons of the MiniEdit panel will be disabled.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting Terminal.

Step 5. Type the command shown below to display the IP addresses assigned to host h1. The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask 255.0.0.0.

```
ifconfig
```
You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address 15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on *Stop* button.

![Stop button](image)

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the network topology, particularly when its complexity increases. MiniEdit enables you to save the topology to a file.

Step 1. Save the current topology by clicking on *File* then *Save*. Provide a name for the topology and save it in the local folder. In this case, we used *myTopology* as the topology name.
Figure 28. Saving the topology.

Step 2. Load the topology by clicking on *File* then *Open*. Search for the topology file called `lab1.mn` and click on *Open*. A new topology will be loaded to MiniEdit.

![MiniEdit](image)

Figure 29. Opening a topology.

4 Configure router r1

In the previous section, you loaded a topology that consists in two networks directly connected to router r1. Consider Figure 30. In this topology two LANs, defined by switch s1 and switch s2 are connected to router r1. Initially, host h1 and host h2 do not have connectivity thus, you will configure router r1’s interfaces in order to establish connectivity between the two networks.
Table 2 summarized the IP addresses used to configure router r1 and the end-hosts.

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>IP Address</th>
<th>Subnet</th>
<th>Default gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>r1-eth0</td>
<td>192.168.1.1</td>
<td>/24</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>r1-eth1</td>
<td>192.168.2.1</td>
<td>/24</td>
<td>N/A</td>
</tr>
<tr>
<td>h1</td>
<td>h1-eth0</td>
<td>192.168.1.10</td>
<td>/24</td>
<td>192.168.1.1</td>
</tr>
<tr>
<td>h2</td>
<td>h2-eth0</td>
<td>192.168.2.10</td>
<td>/24</td>
<td>192.168.2.1</td>
</tr>
</tbody>
</table>

Step 1. Click on the *Run* button to start the emulation. The emulation will start and the buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

![Figure 31. Starting the emulation.](image)

4.1 Verify end-hosts configuration

In this section, you will verify that the IP addresses are assigned according to Table 2. Additionally, you will check routing information.

Step 1. Hold right-click on host h1 and select *Terminal*. This opens the terminal of host h1 and allows the execution of commands on that host.
Step 2. In host h1 terminal, type the command shown below to verify that the IP address was assigned successfully. You will verify that host h1 has two interfaces, h1-eth0 configured with the IP address 192.168.1.10 and the subnet mask 255.255.255.0 and, the loopback interface lo configured with the IP address 127.0.0.1.

```
ifconfig
```

![ifconfig_output](image)

Figure 33. Output of `ifconfig` command.

Step 3. In host h1 terminal, type the command shown below to verify that the default gateway IP address is 192.168.1.1.

```
route
```

![route_output](image)
Step 4. In order to verify host 2 default route, proceed similarly by repeating from step 1 to step 3 in host h2 terminal. Similar results should be observed.

4.2 Configure router’s interface

Step 1. In order to configure router r1, hold right-click on router r1 and select Terminal.

Step 2. In this step, you will start zebra daemon, which is a multi-server routing software that provides TCP/IP based routing protocols. The configuration will not be working if you do not enable zebra daemon initially. In order to start the zebra, type the following command:

zebra
Step 3. After initializing zebra, vtysh should be started in order to provide all the CLI commands defined by the daemons. To proceed, issue the following command:

```
vtysh
```

Step 4. Type the following command in the router r1 terminal to enter in configuration mode.

```
configure terminal
```

Step 5. Type the following command in the router r1 terminal to configure interface r1-eth0.

```
interface r1-eth0
```

Figure 36. Starting zebra daemon.

Figure 37. Starting vtysh on router r1.

Figure 38. Entering in configuration mode.

Figure 39. Configuring interface r1-eth0.
Step 6. Type the following command on router r1 terminal to configure the IP address of the interface r1-eth0.

```
ip address 192.168.1.1/24
```

![Figure 40. Configuring an IP address to interface r1-eth0.](image)

Step 7. Type the following command exit from interface r1-eth0 configuration.

```
exit
```

![Figure 41. Exiting from configuring interface r1-eth0.](image)

Step 8. Type the following command on router r1 terminal to configure the interface r1-eth1.

```
interface r1-eth1
```
Figure 42. Configuring interface *r1-eth1*.

Step 9. Type the following command on router *r1* terminal to configure the IP address of the interface *r1-eth1*.

```
ip address 192.168.2.1/24
```

Figure 43. Configuring an IP address to interface *r1-eth1*.

Step 10. Type the following command to exit from *r1-eth1* interface configuration.

```
exit
```
4.3 Verify router r1 configuration

Step 1. Exit from router r1 configuration mode issuing the following command:

```
exit
```

Step 2. Type the following command on router r1 terminal to verify the routing information of router r1. It will be showing all the directly connected networks.

```
show ip route
```
4.4 Test connectivity between end-hosts

In this section you will run a connectivity test between host h1 and host h2.

Step 1. In host h1 terminal type the command shown below. Notice that according to Table 2, the IP address 192.168.2.10 is assigned to host h2. To stop the test press `ctrl+c`.

```
ping 192.168.2.10
```

This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

