JOINT ROUTING AND PLACEMENT OF VIRTUAL NETWORK FUNCTIONS

Jorge Crichigno1,2, D. Oliveira3, M. Pourvali3, N. Ghani3, D. Torres2

1University of South Carolina, SC, USA
2Northern New Mexico College, NM, USA
3University of South Florida, FL, USA
Agenda

• Introduction
• Optimization model
• Numerical examples
• Concluding remarks
Introduction

- Network Function Virtualization (NFV) is a technology that permits the implementation of Network Functions (NFs) on datacenters’ commodity servers.
- Network functions include:
 - Firewall, access control lists
 - Routers, switches, NAT, DHCP

http://www.vmware.com/
Introduction

• Consider the weighted network below
• A set of datacenter that implement particular functions
• There is a set of function $F = \{0, 1\}$
• A client request is interested in both functions to apply them to a flow from ingress switch 0 to egress switch 3
• A datacenter d implements $F_d \subseteq F$
• The cost and resources to implement a function are datacenter-dependent
• What should the path of the flow be, in order to minimize the routing and deployment costs?
Introduction

Example:

- Datacenter 1 implements functions 0 and 1 at costs 1 and 10
- Datacenter 2 implements functions 0 and 1 at costs 10 and 1
Example:

- Datacenter 1 implements functions 0 and 1 at costs 1 and 10
- Datacenter 2 implements functions 0 and 1 at costs 10 and 1
- The optimal solution places functions 0 and 1 at datacenters 1 and 2 respectively, and route the traffic through (0, 2), (2, 1), (1, 3)
Optimization Model

- The network is represented as a graph $G = (V, E)$
- Each link $(i, j) \in E$ has an associated cost c_{ij}
- The subset $D \subseteq V$ represents the set of datacenters
- A datacenter $d \in D$ implements a subset of functions $F_d \subseteq F$
- Each request $r \in R$ is characterized by a 3-tuple (src_r, dst_r, F_r)
- A datacenter has a set of resources $W = \{w_{d,1}, w_{d,2}, \ldots, w_{d,m}\}$
- To implement function $i \in F_d$, the datacenter uses $w_{d,1}^i, w_{d,2}^i, \ldots, w_{d,m}^i$
- The setup cost of an instance $i \in F_d$ is $c_{i_d}^i$
- Each instance $i \in F_d$ can serve up to λ_d^i requests
- Variable $x_{r,d}^i$ indicates whether datacenter d serves function $i \in F_r$ requested by $r \in R$
- Variable y_d^i indicates the number of instances of function i at d
- Variable l_{r}^{ij} indicates whether link $(i, j) \in E$ is used by flow $r \in R$
Optimization Model

- The objective is the maximization of the number of satisfied network functions (NFs)

\[
\text{Max } F_1 = \sum_{r \in R} \sum_{i \in F_d} \sum_{d \in D} x_{r,d}^i = x_{0,1}^0 + x_{0,1}^1 + x_{0,2}^0 + x_{0,2}^1
\]
Optimization Model

- The objective is the maximization of the number of satisfied network functions (NFs)

\[
\text{Max } F_1 = \sum_{r \in R} \sum_{i \in F_d} \sum_{d \in D} x_{r,d}^i = x_{0,1}^0 + x_{0,1}^1 + x_{0,2}^0 + x_{0,2}^1
\]

- Minimization of the NF deployment cost

\[
\text{Max } -F_2 = \sum_{d \in D} \sum_{i \in F_d} c_{d} y_{d}^i = y_1^0 + 10y_1^1 + 10y_2^0 + y_2^1
\]
Optimization Model

- Minimization of the routing cost

\[
\text{Max - F3} = \sum_{r \in R} \sum_{(i,j) \in E} c^{i,j} l_r^{(i,j)} = \\
10l_0^{(0,1)} + l_0^{(0,2)} + 10l_0^{(1,0)} + l_0^{(1,2)} + l_0^{(1,3)} + l_0^{(2,0)} + l_0^{(2,1)} + l_0^{(2,3)} + l_0^{(3,1)} + l_0^{(3,2)}
\]
Optimization Model

- Requested functions 0 and 1 are only implemented in one datacenter

\[
\sum_{d \in D} x_{r,d}^i \leq 1 \quad \Rightarrow \quad x_{0,1}^0 + x_{0,2}^0 \leq 1 \quad \text{Function 0}
\]

\[
x_{0,1}^1 + x_{0,2}^1 \leq 1 \quad \text{Function 1}
\]
Optimization Model

• The total amount of resources (memory, CPU, storage) is limited at each datacenter

• E.g., 15 and 20 storage units used by an instance of function 0 and 1 respectively at datacenter 1. Datacenter has 100 storage units

\[
\sum_{i \in F_d} w_{d,j}^i y_d^i \leq w_{d,j} \quad \text{Datacenter 1, storage resource}
\]

\[
15y_1^0 + 20y_1^1 \leq 100
\]
Optimization Model

• There is a path from the ingress switch 0 to egress switch 3

Node 0: \[(l_0^{(0,1)} + l_0^{(0,2)}) - (l_0^{(1,0)} + l_0^{(2,0)}) = 1 \]

Node 1: \[(l_0^{(1,0)} + l_0^{(1,2)} + l_0^{(1,3)}) - (l_0^{(0,1)} + l_0^{(2,1)} + l_0^{(3,1)}) = 0 \]

Node 2: \[(l_0^{(2,0)} + l_0^{(2,1)} + l_0^{(2,3)}) - (l_0^{(0,2)} + l_0^{(1,2)} + l_0^{(3,2)}) = 0 \]

Node 3: \[(l_0^{(3,1)} + l_0^{(3,2)}) - (l_0^{(1,3)} + l_0^{(2,3)}) = -1 \]

\[
\sum_{j: (i, j) \in E} l_{ij}^r - \sum_{j: (j, i) \in E} l_{ji}^r = \begin{cases}
-1; i = dst, src \neq dst \\
1; i = src, src \neq dst \\
0; otherwise.
\end{cases}
\]
Optimization Model

• If a function 0 is placed at datacenter 1, then the path from the ingress switch 0 to egress switch 3 must include datacenter 1

\[l_0^{(1,0)} + l_0^{(1,2)} + l_0^{(1,3)} \geq x_{0,1}^0 \]
Optimization Model

- If a function 0 is placed at datacenter 1, then the path from the ingress switch 0 to egress switch 3 must include datacenter 1

\[l_0^{(1,0)} + l_0^{(1,2)} + l_0^{(1,3)} \geq x_{0,1}^0 \]

- If a function 1 is placed at datacenter 1, then the path from the ingress switch 0 to egress switch 3 must include datacenter 1

\[l_0^{(1,0)} + l_0^{(1,2)} + l_0^{(1,3)} \geq x_{0,1}^1 \]
Optimization Model

• If a function 0 is placed at datacenter 1, then the path from the ingress switch 0 to egress switch 3 must include datacenter 1

\[l^{(1,0)}_0 + l^{(1,2)}_0 + l^{(1,3)}_0 \geq x_{0,1}^0 \]

• If a function 1 is placed at datacenter 1, then the path from the ingress switch 0 to egress switch 3 must include datacenter 1

\[l^{(1,0)}_0 + l^{(1,2)}_0 + l^{(1,3)}_0 \geq x_{0,1}^1 \]

\[\sum_{(d,j) \in E} l^{d,j}_r \geq x^i_{r,d} \]
Optimization Model

- Variables $x_{r,d}^i$, y_d^i, $l_r^{i,j}$ are binary, integer, and real – NP hard
- For large instances of the problem, finding the optimal solution is not practical

\[
\begin{align*}
\text{max } F &= w_1 \sum_{r \in R} \sum_{i \in F_r} \sum_{d \in D} x_{r,d}^i - w_2 \sum_{d \in D} \sum_{i \in F_d} c_d^i y_d^i \\
&\quad - w_3 \sum_{r \in R} \sum_{(i,j) \in E} e^{i,j} l_r^{i,j} \\
\sum_{d \in D} x_{r,d}^i &\leq 1 \quad r \in R, i \in F_r \\
x_{r,d}^i &\leq y_d^i \quad r \in R, i \in F_r, d \in D | i \in F_d \\
\sum_{i \in F_d} w_d^i y_d^i &\leq w_{d,j} \quad d \in D, r \in R, j \in \{1, 2, \ldots, |W_d|\} \\
\sum_{r \in R} x_{r,d}^i &\leq \lambda_d^i y_d^i \quad d \in D, i \in F_d \\
\sum_{j: (i,j) \in E} l_r^{i,j} - \sum_{j: (j,i) \in E} l_r^{j,i} &= \begin{cases}
-1; & i = \text{dst}_r, \ src_r \neq \text{dst}_r \\
1; & i = \text{src}_r, \ src_r \neq \text{dst}_r \\
0; & \text{otherwise}. \ i \in V, r \in R \\
\end{cases} \\
\sum_{(d,j) \in E} l_r^{d,j} &\geq x_{r,d}^i \quad r \in R, i \in F_r, d \in D | i \in F_d \\
x_{r,d}^i &\in \{0, 1\} \quad r \in R, i \in F_r, d \in D | i \in F_d \\
y_d^i &\in \mathbb{Z}^+ \quad d \in D, i \in F_d \\
l_r^{i,j} &\in \{0, 1\} \quad r \in R, (i,j) \in E
\end{align*}
\]
Greedy Approach

- Greedy approach based on Dijkstra algorithm

Algorithm 1: Greedy Routing and Placement of NFs

1. INPUT: \(G(V, E), e_{ij} \forall (i, j) \in E, R, F, D \)
2. OUTPUT: \(x_{r,d}, y_{d}, t_{ij}^{r} \) values
3. set \(x_{r,d} = 0, y_{d} = 0, t_{ij}^{r} = 0 \) for all \(r \in R, i \in F_r, d \in D, (i, j) \in E \)
4. for all \(r \in R \) do
5. \(D(r) = \{ \} \)
6. \(k = 1 \)
7. for all \(i \in F_r \) do
8. \(d_k = \) datacenter that implements \(i \) at minimum cost and has enough resources to serve an additional request
9. update resources of \(d_k \)
10. update \(y_{d_k} \)
11. set \(x_{r,d_k} = 1 \)
12. \(D(r) = D(r) \cup d_k \)
13. \(k = k + 1 \)
14. end for
15. end for
16. for all \(r \in R \) do
17. \(src = src_r \)
18. \(C(r) = \{ src \} \)
19. for \(k = 1 \) to \(|D(r)| \) do
20. \(dst = d_k \)
21. if \(d_k \in C(r) \) then
22. \(SP = \text{Dijkstra}(src, dst) \)
23. set \(t_{ij}^{r} = 1 \) for all link \((i, j) \in SP \)
24. \(C(r) = C(r) \cup d_k \)
25. \(C(r) = C(r) \cup j \), for all datacenter \(j \in SP, j \in D(r) \)
26. end if
27. \(src = dst \)
28. end for
29. \(dst = dst_r \)
30. \(SP = \text{Dijkstra}(src, dst) \)
31. set \(t_{ij}^{r} = 1 \) for all \((i, j) \in SP \)
32. end for
33. return \(x_{r,d}, y_{d}, t_{ij}^{r} \)

Placement of network functions, one request at a time

Routing of flows through datacenters implementing the functions, one request at a time
Numerical Examples

- The number of types of resources at a datacenter was set to three (e.g., RAM, storage, CPU)
- The amount of resources of a type at a datacenter is uniform in [.33, 300]
- There are five network functions; each datacenter implements three functions
- The amount of resources of a type needed for an instance of a function is uniform in [0, 100]
- The cost of instantiate a function is uniform in [0, 100]
- Datacenters were randomly located in the topology below
When there is a small number of datacenters (3) and multiple requests (15), ILP has a comparable performance to that of LP; deployment cost increases with the number of function per request.

The gap of the heuristic increases with the number of function per requests; finding the optimal solution requires the evaluation of a large number of combinations.

\[
\text{Gap} = \frac{Ov_{LP} - Ov_{alg}}{Ov_{LP}}
\]

where \(Ov_{LP}\) is the optimal value obtained with the LP scheme, and \(Ov_{alg}\) is the optimal value obtained with the ILP or greedy heuristic.
Numerical Example 1

- Deployment cost increases with the number of functions per request
• For LP and ILP, the increase in routing cost is mostly flat; i.e., when the number of datacenters is small, routing is ‘less important’, because the implementation of functions are concentrated in few datacenters
• When there is a large number of datacenters (11) and multiple requests (15), ILP continues to have a comparable performance to LP.
• Deployment cost increases substantially when the number of functions per request increases from 1 to 3. However, the increase in cost is minimal when the number of functions per request increases from 3 to 5; i.e., a single instance serves multiple requests without an increase of deployment of functions.
• For LP and ILP, the routing cost increases with the number of function per requests; i.e., when the number of datacenters is large, routing is ‘more important’, because the implementation of functions are dispersed in many datacenters.
Concluding Remarks

- We are currently working on an optimization scheme for the joint routing and placement of virtual network functions (NFs) problem.
- The proposed ILP maximizes the number of satisfied NFs while at the same time minimizes the deployment and routing costs.
- A heuristics and ILP are currently being tested.
- The implementation of the proposed schemes in small testbeds using ONOS SDN is being implemented.

THANK YOU
Numerical Example 3

- ILP and LP performances similar; ~2% gap
- As the number of request increases, the heuristic gap substantially increases; finding the optimal solution requires the evaluation of a large number of combinations

\[
\text{Gap} = \frac{OV_{LP} - OV_{alg}}{OV_{LP}}
\]

where \(OV_{LP} \) is the optimal value obtained with the LP scheme, and \(OV_{alg} \) is the optimal value obtained with the ILP or greedy heuristic.
• Deployment cost increases with the number of requests; ILP performance is comparable to that of LP – 'small' performance gap
Numerical Example 3

- Routing cost increases with the number of requests; ILP performance is comparable to that of LP – 'small' performance gap
- While the gap of the routing cost of the greedy approach decreases with the number of requests, the number of satisfied requests is mostly flat
Introduction

About Linear Programming

• Many of the problems for which we want algorithms are *optimization* tasks

• Optimization tasks seek a solution that (1) satisfies certain constraints and (2) is the best, with respect to a criterion

• *Linear programming* describes a broad class of optimization tasks in which both the constraints and the optimization criterion are *linear functions*
About Reductions

- Sometimes a computational task is sufficiently general that any subroutine for it can also be used to solve a variety of other tasks, which at glance might seem unrelated.
- Once we have an algorithm for a problem, we can use it to solve other problems.