BUILDING A CYBERSECURITY PIPELINE THROUGH EXPERIENTIAL VIRTUAL LABS AND WORKFORCE ALLIANCES

Jorge Crichigno1, S. Ahmed2, J. Gerdes1, R. Brookshire1

1University of South Carolina
2Northern New Mexico College

ASEE 2019 Annual Conference
June 18, 2019
Tampa, FL

Supported by NSF, Project #1822567
Agenda

- Introduction
- Project overview
- Virtual laboratories
- Internships
- Capstone projects
- Workshops
- Conclusion and Future work
Introduction

• The primary institution of this project is the University of South Carolina (USC)
• Other institutions are Northern New Mexico College (NNMC) and University of South Florida (USF)
• The project is motivated by the need of cybersecurity professionals
Project Overview

• The project goals are:
 ➢ Strengthen the cybersecurity curriculum in three degree programs (USC, NNMC, USF) using virtual laboratories (vLabs)
 ➢ Establish cybersecurity-related internships and capstone projects in conjunction with national laboratories and industry
 ➢ Increase the capacity for education of cybersecurity professionals in SC, NM, and FL

• Key partners include agencies, private businesses, and national laboratories
Virtual Laboratories

• Hands-on experiences are essential in IT
• Physical labs are not scalable, they require maintenance
• Time consuming to setup the experimental environment
• Costly in labor (technician), equipment, and space

How to include authentic practice, professional tools and platforms, access to computing technology in the work environment in a scalable way?
Virtual Laboratories

- Virtual platform based on virtual machines (VMs)
- Pods launched on demand on an server hosted in IIT
- Access to the virtual platform via web interface
- Development of custom pods
- Pod elements (computer, firewall, router, equipment) are VMs rather than physical devices

Partnership w/ NDG

1The Network Development Group (NDG), www.netdevgroup.com
Pod Examples – Introduction to Cryptography

- Symmetric-key encryption
- Generation of public keys
- Public-key encryption
- Certificate authorities
- Digital signatures
- Digital envelopes
- Web of trusts
- Encryption protocols
Pod Examples – Next-generation Firewalls

- Firewalls
- Malware analysis
- Application identification
- User identification
- URL filtering
- Virtual Private Networks
- Monitoring and reporting
- Modern techniques for malware identification
- Palo Alto Firewalls provided VMs at no cost

Course: ITEC 493 (Security)
Pod Examples – Bro Intrusion Detection

- High-performance tools
- Big data transfers
- Access-control lists
- Traffic routing for high speeds
- Intrusion detection systems
- Passive network monitoring

Course: ITEC 493 (Security)
Virtual Laboratories - Impact

- Virtual labs currently used in two courses at USC and NNMC, and one course at USF
- Spring 2019: ~50 students
- Hours attended: 1,399.25
- Hours per user: 27.9
- Hours per user / week: 2.5
Internships

• Students are required 400 hours of internship for graduation
• Prior to the internship, students take a 3-credit seminar
• The seminar matches students’ interest and skills with business needs
• Internships permit students to develop real-world cyber-skills, and ease their transition from academia to the workplace
• Students gain employability and soft skills
Internships

- Recruitment of companies
- Internship seminars
- Workshops on how to apply to internships: twice per year
Internships - Impact

- Companies recruited during the first year of the project

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
<th># positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos National Laboratory</td>
<td>Los Alamos, NM</td>
<td>8</td>
</tr>
<tr>
<td>Capgemini</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>IT Services USC</td>
<td>Columbia, SC</td>
<td>2</td>
</tr>
<tr>
<td>SC Department of Education</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>USC</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>Global Pundits</td>
<td>Lexington, SC</td>
<td>1</td>
</tr>
<tr>
<td>Savannah River National Lab</td>
<td>Savannah River Site, SC</td>
<td>3</td>
</tr>
<tr>
<td>SC Government</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>IBM</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>SC Cyber</td>
<td>Columbia, SC</td>
<td>3</td>
</tr>
<tr>
<td>U.S. Air Force</td>
<td>Charleston, SC</td>
<td>1</td>
</tr>
<tr>
<td>Blue Cross Blue Shield</td>
<td>Columbia, SC</td>
<td>2</td>
</tr>
<tr>
<td>SC Election Commission</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>Sealed Air</td>
<td>Simpsonville, SC</td>
<td>1</td>
</tr>
<tr>
<td>Spirit Communications</td>
<td>Columbia, SC</td>
<td>1</td>
</tr>
<tr>
<td>Charles Schwab</td>
<td>Phoenix, AZ</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

SRNL Interns Meet and Greet

Internships Presentation Day
Capstone Projects

- A pilot component of this project is the integrative capstone
- Students work in teams to complete an industry-sponsored capstone project
- ~10 cybersecurity capstone projects per year
Dissemination – Workshops

• Activities rely on a good cybersecurity preparation
• Virtual Labs are fundamental (hands-on skills)
• The project team organizes workshops on “Developing Virtual Labs”
Dissemination – Workshops

- During the first year of the project, two two-day workshops were organized:
 - 1st workshop: 30 instructors
 - 2nd workshop: 61 instructors / 25 states

![Bar chart showing satisfaction scores for Workshop 1 and Workshop 2]

<table>
<thead>
<tr>
<th>Question</th>
<th>Workshop 1</th>
<th>Workshop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 Overall rate</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Q2 Instructor rate</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Q3 Presentation material</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Q4 Would you attend another workshop?</td>
<td>4.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Q5 Would you attend another online workshop?</td>
<td>-</td>
<td>4.1</td>
</tr>
</tbody>
</table>

- 5: Extremely satisfied
- 4: Very satisfied
- 3: Moderately satisfied
- 2: Slightly satisfied
- 1: Poor / not at all satisfied
Conclusion and Future Work

- This project enhances the cybersecurity education in multiple institutions in SC, NM, and FL

- Components
 - **vLabs**: permit students to learn core cybersecurity concepts combined with authentic practice and use of professional tools
 - **Internships and capstones**: permit students develop real-world cyber-skills; gain employability and soft skills; and transition from academia to the workplace
 - **Dissemination**: strong interest in the adoption of vLabs is reflected on the attendance to the workshops (100 instructors, from more than 70 institutions in 25 states)

- Future work includes
 - Quantify the impact of the different activities
 - Expand capacity for vLabs and internships
 - Continue to recruit companies for internships and capstone projects