HANDS-ON VLABS: ZEEK (BRO) IDS

ELIAS BOU-HARB, Ph.D.
Assistant Professor

ANTONIO MANGINO
Research Assistant

NSF Award 1829698
CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers

July 23rd, 2019
Training Workshop for Network Engineers and Educators on Tools and Protocols for High-Speed Networks
Zeek (Bro) Labs: Outline

Lab 1. Introduction to the Capabilities of Zeek
Lab 2. An Overview of Zeek Log Files
Lab 3. Parsing, Reading and Organizing Bro Log Files
Lab 4. Generating and Analyzing Network Scanner Traffic
Lab 5. Generating, Capturing and Analyzing DoS-centric Network Traffic
Zeek (Bro) Labs: Outline

- Lab 6. Introduction to Zeek Scripting
- Lab 7. Advanced Zeek Scripting for Anomaly and Malicious Event Detection
- Lab 8. Preprocessing of Zeek Output Logs for Machine Learning
- Lab 9. Developing Machine Learning Classifiers for Anomaly Inference and Classification
- Lab 10. Profiling and Performance Metrics of Zeek
Lab 3: Parsing, Reading and Organizing Zeek Log Files
Lab 3: Motivation

- Zeek log files contain extensive packet and connection-related data, separated in tab-delimited columns.

- Without requiring complex processing, packet data and connection results can be extracted using terminal utilities.

- Extracted data can confirm the existence of malicious events or anomalies, representing the need for further analysis.
Lab 3: Objectives

- Use Linux tools and commands for text file processing
- Practice Linux shell scripts and the AWK scripting language
- Incorporate AWK with the zeek-cut utility to provide formatted log files
Lab 3: The zeek-cut Utility

- Zeek’s network traffic processing generates multiple log files, each declared within event-based policy scripts.

- Log files include headers and padding – requiring popular Unix terminal utilities to format and analyze specific queries.

- The zeek-cut utility is used to retrieve specific columns and data entries from Zeek log files to be processed.
Lab 3: Default Zeek Log File Format

- Log file formatting, path and padding options

<table>
<thead>
<tr>
<th>#separator \x09</th>
</tr>
</thead>
<tbody>
<tr>
<td>#set_separator ,</td>
</tr>
<tr>
<td>#empty_field</td>
</tr>
<tr>
<td>#unset_field</td>
</tr>
<tr>
<td>#path conn</td>
</tr>
<tr>
<td>#open 2019-07-15-14-00-58</td>
</tr>
<tr>
<td>#fields ts</td>
</tr>
<tr>
<td>#fields uid</td>
</tr>
<tr>
<td>#fields id.orig_h</td>
</tr>
<tr>
<td>#fields id.orig_p</td>
</tr>
<tr>
<td>#fields id.resp_h</td>
</tr>
<tr>
<td>#fields id.resp_p</td>
</tr>
<tr>
<td>#fields proto</td>
</tr>
<tr>
<td>#fields service</td>
</tr>
<tr>
<td>#fields duration</td>
</tr>
<tr>
<td>#fields orig_bytes</td>
</tr>
<tr>
<td>#fields resp_bytes</td>
</tr>
<tr>
<td>#fields conn_state</td>
</tr>
<tr>
<td>#fields local_orig</td>
</tr>
<tr>
<td>#fields missed_bytes</td>
</tr>
<tr>
<td>#fields history</td>
</tr>
<tr>
<td>#fields orig_pkts</td>
</tr>
<tr>
<td>#fields orig_ip_bytes</td>
</tr>
<tr>
<td>#fields resp_pkts</td>
</tr>
<tr>
<td>#fields tunnel_parents</td>
</tr>
<tr>
<td>#types time string addr port addr port enum string string interval count</td>
</tr>
<tr>
<td>1295981542.708292 CYpaWH1PU5PKOOSBele 192.168.3.131 55950 72.14.213.102 80 tcp http 0.058485 944 487 SF - - 0 ShADFadRf 5</td>
</tr>
<tr>
<td>1156 4 659 -</td>
</tr>
<tr>
<td>1295981543.461968 C8Cn4g1cJiS2zEfnrc 192.168.3.131 55955 207.46.148.38 80 tcp http 0.028620 448 279 SF - - 0 ShADfFa 5</td>
</tr>
</tbody>
</table>

8
Lab 3: Default Zeek Log File Format

- **Fields – Categories of packet features**

```plaintext
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2019-07-15-14-00-58

#fields ts  uid  id.orig_h  id.orig_p  id.resp_h  id.resp_p  proto
service duration orig_bytes resp_bytes conn_state local_orig
local_resp  missed_bytes history orig_pkts
resp_ip_bytes tunnel_parents

#types time  string  addr  port  addr  port  enum  string  interval  count
count  string  bool  bool  count  string  count  count  count  count  set[string]
1295981542.708292  CYpaWH1PU5PKOOSBle  192.168.3.131  55950  72.14.213.102  80
tcp  http  0.058485  944  487  SF  -  -  0  ShADFadRf
5  1156  4  659  -
1295981543.461968  C8Cn4g1cJiS2zEfnrc  192.168.3.131  55955  207.46.148.38  80
tcp  http  0.028620  448  279  SF  -  -  0  ShADfFa 5
660  3  407  -
```
Lab 3: Default Zeek Log File Format

- **Types** – Variable data objects of packet features

```plaintext
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2019-07-15-14-00-58
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto service duration orig_bytes resp_bytes conn_state local_orig missed_bytes history orig_pkts orig_ip_bytes resp_pkts
#types time string addr port addr port enum string interval count count set[string]
```

<table>
<thead>
<tr>
<th>time</th>
<th>string</th>
<th>addr</th>
<th>port</th>
<th>addr</th>
<th>port</th>
<th>enum</th>
<th>string</th>
<th>interval</th>
<th>count</th>
<th>count</th>
<th>set[string]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1295981542.708292</td>
<td>CYpaWH1PU5PKOOSBle</td>
<td>192.168.3.131</td>
<td>55950</td>
<td>72.14.213.102</td>
<td>80</td>
<td>tcp</td>
<td>http</td>
<td>0.058485</td>
<td>944</td>
<td>487</td>
<td>SF</td>
</tr>
<tr>
<td>1156</td>
<td>4</td>
<td>659</td>
<td>-</td>
<td></td>
<td>0</td>
<td>ShADFadRf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1295981543.461968</td>
<td>C8Cn4g1cJiS2zEfnc</td>
<td>192.168.3.131</td>
<td>55955</td>
<td>207.46.148.38</td>
<td>80</td>
<td>tcp</td>
<td>http</td>
<td>0.028620</td>
<td>448</td>
<td>279</td>
<td>SF</td>
</tr>
<tr>
<td>660</td>
<td>3</td>
<td>407</td>
<td>-</td>
<td></td>
<td>0</td>
<td>ShAdfFa 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Lab 3: Default Zeek Log File Format

- Tab-Delimited packet data

```plaintext
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2019-07-15-14-00-58
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto
service duration orig_bytes resp_bytes conn_state local_orig
local_resp missed_bytes history orig_pkts
resp_ip_bytes tunnel_parents
#types time string addr bool count addr string port count enum count string count interval count count set[string]
1295981542.708292 CYpaWH1P5PK0OSBle 192.168.3.131 55950 72.14.213.102 80
tcp http 0.058485 944 487 SF - - 0 ShADFadRf
tcp 5 1156 4 659 -
1295981543.461968 C8Cn4g1cJiS2zEfnrc 192.168.3.131 55955 207.46.148.38 80
tcp http 0.028620 448 279 SF - - 0 ShADFFa 5
660 3 407 -
```
Lab 3: Example of zeek-cut Query

- Display the 10 destination ports that received the most network traffic, organized in descending order

```bash
zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10
```

```
admin@bro2:~/Zeek-Labs-Workspace$ zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10
354 80
78 443
36 5480
32 53
11 8443
10 7001
8 1900
6 12350
5 54900
5 50023
admin@bro2:~/Zeek-Labs-Workspace$
```
Lab 3: Example zeek-cut Query

- Display the number of packets received per (protocol) service, organized in ascending order

```
zeeek-cut service < conn.log | sort | uniq -c | sort -n
```
Lab 4: Generating and Analyzing Network Scanning Traffic
Lab 4: Motivation

- Zeek policy scripts and filters can be employed during network traffic processing to include new event-based actions

- Malicious network traffic such as network scanning can be detected and extracted using policy scripts or filters

- Active scanning traffic targeting networks raises concerns over possible network vulnerabilities
Lab 4: Objectives

- Introduce the notion of scanning events
- Introduce the nmap software
- Utilize the lab topology to generate, record and analyze scan traffic
Lab 4: Network Scanning

- Network scanning is a preliminary action typically executed to find vulnerabilities or exploit hosts.

- Malicious events targeting discovered vulnerabilities may cause data breaches, denial of service or monetary losses.

- Discovery of network scanning traffic allows network analysts to study and mitigate possible vulnerabilities probed by scan traffic.
Lab 4: Example Live Network Capture

- The virtual lab workspace includes the `nmap` software.
- `nmap` is used to generate various forms of scan traffic, which is then captured using the Zeek IDS.
- Zeek utilizes the `tcpdump` utility for live network capture.

```
sudo tcpdump -i ens33 -w packetcapture.pcap
```
Lab 4: Example Live Network Capture

- Generating probing traffic:

```
admin@bro1:~$ sudo nmap -sT 192.168.2.2
Starting Nmap 7.60 (https://nmap.org) at 2019-07-15 14:48 EDT
Nmap scan report for 192.168.2.2
Host is up (0.00024s latency).
All 1000 scanned ports on 192.168.2.2 are closed
Nmap done: 1 IP address (1 host up) scanned in 0.29 seconds
admin@bro1:~$
```
Lab 4: Example Live Network Capture

- Capturing live network traffic:
Lab 4: Example Live Network Capture

- Viewing the network capture file:

```
admin@bro2:~/Zeek-Labs-Workspace$ tcpdump -r scantraffic.pcap | grep '192.168.1.2'
reading from file scantraffic.pcap, link-type EN10MB (Ethernet)
19:27:30.092645 IP 192.168.1.2 > bro2: ICMP echo request, id 3834, seq 0, length 8
19:27:30.092675 IP bro2 > 192.168.1.2: ICMP echo reply, id 3834, seq 0, length 8
19:27:30.092704 IP 192.168.1.2.57190 > bro2.http: Flags [S], seq 1632392789, win 1024, options [mss 1460], length 0
19:27:30.092713 IP bro2.http > 192.168.1.2.57190: Flags [R.], seq 0, ack 1632392790, win 1024, length 0
19:27:30.092721 IP bro2.http > 192.168.1.2.57190: Flags [R], seq 1632392789, win 0, length 0
19:27:30.092734 IP 192.168.1.2 > bro2: ICMP time stamp query id 24283 seq 0, length 20
```
Lab 9: Developing Machine Learning Classifiers for Anomaly Inference and Classification
Lab 9: Motivation

- Malicious network attacks are continually evolving, utilizing new packet features and abusing critical protocols.

- Keeping filters and scripts updated to handle newly emerging malicious techniques is a daunting task.

- Machine learning classifiers can be used to predict, infer and fingerprint unlabeled traffic.
Lab 9: Objectives

- Introduce the advantages of leveraging machine learning for network analysis
- Develop and train a decision table to classify scan-related network traffic activities
- Test the developed models and review their classification output on test datasets
Lab 9: Machine Learning Classifiers

- By preprocessing Zeek log files, they can be converted to training and test artifacts for machine learning classifiers.

- If trained with a valid, comprehensive dataset, classifiers can be used to identify and predict anomalous traffic.

- The virtual lab workspace includes the Weka software, which is used to preprocess and train machine learning classifiers.
Lab 9: Example Classifier Predictions

- Unlabeled dataset:

```
@RELEATION ntraffic

@ATTRIBUTE time NUMERIC
@ATTRIBUTE sourceip NOMINAL
@ATTRIBUTE destip NUMERIC
@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
@ATTRIBUTE protocol {tcp, udp, icmp}
@ATTRIBUTE service NOMINAL
@ATTRIBUTE class {1, 0}

@DATA
1563396794,19216813,19216822,5110,80,tcp,http,?
1563396797,19216822,19216813,80,5510,tcp,http,?
```
Lab 9: Example Classifier Predictions

- Classifier predicted dataset:

```
@RELATION ntraffic

@ATTRIBUTE time NUMERIC
@ATTRIBUTE sourceip NOMINAL
@ATTRIBUTE destip NUMERIC
@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
@ATTRIBUTE protocol {tcp, udp, icmp}
@ATTRIBUTE service NOMINAL
@ATTRIBUTE class {1, 0}

@DATA
1563396794,19216813,19216822,5110,80,tcp,http,1
1563396797,19216822,19216813,80,5510,tcp,http,0
```
Questions

ELIAS BOU-HAB, Ph.D.
Assistant Professor

ANTONIO MANGINO
Research Assistant

NSF Award 1829698
CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers